论文标题
FEYNMAN-KAC公式的空间渐近学由时间依赖性和空间裂缝的粗糙高斯领域驱动,并具有测量值的初始数据
Spatial asymptotics for the Feynman-Kac formulas driven by time-dependent and space-fractional rough Gaussian fields with the measure-valued initial data
论文作者
论文摘要
我们将连续的抛物线模型与高斯田地的连续抛物线模型一起考虑,在测量值的初始条件下,其协方差在时间上是不均匀的,空间中的分数粗糙。我们主要研究Stratonovich意义上Feynman-Kac公式的空间行为。受益于基于布朗桥的Feynman-kac公式的应用,可以在比以前更广泛的条件下获得精确的空间渐近学。
We consider the continuous parabolic Anderson model with the Gaussian fields under the measure-valued initial conditions, the covariances of which are nonhomogeneous in time and fractional rough in space. We mainly study the spatial behaviors for the Feynman-Kac formulas in Stratonovich's sense. Benefited from the application of Feynman-Kac formula based on Brownian bridge, the precise spatial asymptotics can be obtained in the broader conditions than before.