论文标题

二进制液体的连续解散过渡:根据子系统分析的有限尺寸缩放

Continuous demixing transition of binary liquids: finite-size scaling from the analysis of sub-systems

论文作者

Pathania, Yogyata, Chakraborty, Dipanjan, Höfling, Felix

论文摘要

其固结点附近的二元液体表现出局部组成的批判性波动。不同的相关长度一直挑战模拟。相图中临界点计算的首选方法是基于一个广泛不同的系统大小的序列的有限尺寸校正的缩放分析。在这里,我们讨论了一种使用一个大型模拟的立方子系统的替代方案,并由现代,大量并行硬件促进。我们举例说明了在关键组成处的对称二进制液体的方法,并将不同的途径与临界温度进行比较:(1)拟合整个系统组成结构中相关长度的临界差异以及编码的易感性,(2)测试数据塌陷和在cr-cr-cr-cr-cr-cr-cr-crumes和cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum cum crome的差异的拟合。子系统。对于最后一条路线,出现了两个困难:子卷是具有自由边界条件的开放系统,对于关键粘合剂累积$ u_c $的无精确估计。其次,模拟框的周期性边界干扰了子卷,我们通过两参数有限尺寸的缩放来解决。对数据分析的暗示修改恢复了共同的相交点,我们估计$ u_c = 0.201 \ pm 0.001 $,对于具有自由边界的类似于ISING的系统。针对小型子系统大小而产生的缩放缩放的汇合校正是按领先顺序量化的,而我们的关键易感性的数据与通用校正指数$ω\约0.83 $兼容。

A binary liquid near its consolute point exhibits critical fluctuations of the local composition; the diverging correlation length has always challenged simulations. The method of choice for the calculation of critical points in the phase diagram is a scaling analysis of finite-size corrections, based on a sequence of widely different system sizes. Here, we discuss an alternative using cubic sub-systems of one large simulation as facilitated by modern, massively parallel hardware. We exemplify the method for a symmetric binary liquid at critical composition and compare different routes to the critical temperature: (1) fitting the critical divergences of the correlation length and the susceptibility encoded in the composition structure factor of the whole system, (2) testing data collapse and scaling of moments of the composition fluctuations in sub-volumes, and (3) applying the cumulant intersection criterion to the sub-systems. For the last route, two difficulties arise: sub-volumes are open systems with free boundary conditions, for which no precise estimate of the critical Binder cumulant $U_c$ is available. Second, the periodic boundaries of the simulation box interfere with the sub-volumes, which we resolve by a two-parameter finite-size scaling. The implied modification to the data analysis restores the common intersection point, and we estimate $U_c=0.201 \pm 0.001$, universal for cubic Ising-like systems with free boundaries. Confluent corrections to scaling, which arise for small sub-system sizes, are quantified at leading order and our data for the critical susceptibility are compatible with the universal correction exponent $ω\approx 0.83$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源