论文标题

自导的多个实例学习,用于弱监督的疾病分类和胸部X光片的本地化

Self-Guided Multiple Instance Learning for Weakly Supervised Disease Classification and Localization in Chest Radiographs

论文作者

Seibold, Constantin, Kleesiek, Jens, Schlemmer, Heinz-Peter, Stiefelhagen, Rainer

论文摘要

缺乏细粒度的注释阻碍了自动诊断系统的部署,这需要对其决策过程进行人性解决的理由。在本文中,我们解决了胸部X光片中异常识别和定位较弱的问题。为此,我们引入了一种新的损失函数,用于训练卷积神经网络,从而增加了\ emph {局部置信}并协助整体\ emph {疾病鉴定}。损失利用图像级和补丁级预测来产生辅助监督。我们没有从以前的损失公式中进行的预测形成严格的二进制,而是以更自定义的方式创建目标,这使损失可以解决可能的错误分类。我们表明,提议的学习方案中提供的监督可导致对多种现实学习以及NIH〜CHESTX-RAY14基准疾病识别的普遍数据集的性能和更精确的预测,这比以前使用的损失更高。

The lack of fine-grained annotations hinders the deployment of automated diagnosis systems, which require human-interpretable justification for their decision process. In this paper, we address the problem of weakly supervised identification and localization of abnormalities in chest radiographs. To that end, we introduce a novel loss function for training convolutional neural networks increasing the \emph{localization confidence} and assisting the overall \emph{disease identification}. The loss leverages both image- and patch-level predictions to generate auxiliary supervision. Rather than forming strictly binary from the predictions as done in previous loss formulations, we create targets in a more customized manner, which allows the loss to account for possible misclassification. We show that the supervision provided within the proposed learning scheme leads to better performance and more precise predictions on prevalent datasets for multiple-instance learning as well as on the NIH~ChestX-Ray14 benchmark for disease recognition than previously used losses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源