论文标题

扭曲和奇异引力涡流

Twisted and Singular gravitating vortices

论文作者

Yao, Chengjian

论文摘要

我们介绍了紧凑的riemann表面上的扭曲引力涡流的概念。如果Riemann表面的属大于1,并且扭曲形式具有合适的符号,我们证明了适当的耦合范围的存在和唯一性的结果,可以使Arxiv的结果概括为Arxiv的结果:1510.03810V2在非扭曲的环境中。通过求解连续路径将耦合常数变形为0,该系统将系统解散为扭曲的Kähler-Einstein公制和扭曲涡流的耦合常数。此外,专门研究一个扭曲家庭的平滑三角洲分布术语,我们证明了奇异引力的涡流的存在,其Kähler指标具有圆锥形的奇异性,而Hermitian Metric具有抛物线象征性。在Bogomol'nyi阶段,我们建立了奇异爱因斯坦 - bogomol'nyi方程的存在结果,该方程代表具有奇异性的宇宙字符串。

We introduce the notion of twisted gravitating vortex on a compact Riemann surface. If the genus of the Riemann surface is greater than 1 and the twisting forms have suitable signs, we prove an existence and uniqueness result for suitable range of the coupling constant generalizing the result of arXiv:1510.03810v2 in the non twisted setting. It is proved via solving a continuity path deforming the coupling constant from 0 for which the system decouples as twisted Kähler-Einstein metric and twisted vortices. Moreover, specializing to a family of twisting forms smoothing delta distribution terms, we prove the existence of singular gravitating vortices whose Kähler metric has conical singularities and Hermitian metric has parabolic singularities. In the Bogomol'nyi phase, we establish an existence result for singular Einstein-Bogomol'nyi equations, which represents cosmic strings with singularities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源