论文标题
扭曲的双层石墨烯。在非零整数填充物处的扭曲双层石墨烯的确切对角线研究
Twisted bilayer graphene.VI. An Exact Diagonalization Study of Twisted Bilayer Graphene at Non-Zero Integer Fillings
论文作者
论文摘要
使用精确的对角度化,我们研究了在第一个魔术角扭曲双层石墨烯的8个平面带中与库仑相互作用的预测的哈密顿量。我们在非手续(手性)平板限制中采用U(4)(U(4)$ \ times $ u(4))对称性,我们将希尔伯特空间缩小到允许左右的$ν= \ pm 3,\ pm2,\ pm2,\ pm1 $ pm1 $ 1填充物进行研究。在第一个手性极限$ w_0/w_1 = 0 $中,$ w_0 $($ w_1 $)是$ aa $($ ab $)跳跃的跳跃,我们发现这些填充物的地面境地非常清楚地描述了Slater的确定量在所谓的Chern基础上,以及确切的Chern Chorn Chorn $ pp pm1 $ \ pm1 $ 1 exciptives copply1 eccipt。在手性 - 流动限制中,激发至系统尺寸$ 8 \ times8 $(对于受限的希尔伯特空间)。我们还发现[Arxiv:2009.11301,2009.11872,2009.12376,2009.12009.13530,13530,2009.14200]中使用的扁平公制条件(FMC),用于获得一系列精确的基础态和激励。对于$ν= -3 $,地面状态是旋转和山谷两极化的Chern绝缘子,$ν_c= \ pm1 $ at $ W_0/W_1/W_1 \ LISHSIM0.9 $(0.3),带有FMC。在$ν= -2 $时,我们只能从数值上访问山谷两极分化的部门,当$ W_0/W_1/W_1 \ GTRSIM0.5T $中,我们找到一个自旋铁磁阶段,其中$ t \ in [0,1] $是实际tbg bandwidth的恢复的因素,否则30. pertirative cartirative。但是,在Intervalley相干部门中预测了分析FMC基态,我们无法访问[ARXIV:2009.13530]。对于$ν= -3 $,使用/不使用FMC,当$ w_0/w_1 $很大时,有限大小的差距$δ$对中性激发消失,从而导致相变。对基态动量部门的进一步分析$ν= -3 $表明(列表)金属,动量$ m_m $($π$)条纹和$ k_m $ -CDW订单,大型$ W_0/w_1 $。
Using exact diagonalization, we study the projected Hamiltonian with Coulomb interaction in the 8 flat bands of first magic angle twisted bilayer graphene. Employing the U(4) (U(4)$\times$U(4)) symmetries in the nonchiral (chiral) flat band limit, we reduced the Hilbert space to an extent which allows for study around $ν=\pm 3,\pm2,\pm1$ fillings. In the first chiral limit $w_0/w_1=0$ where $w_0$ ($w_1$) is the $AA$ ($AB$) stacking hopping, we find that the ground-states at these fillings are extremely well-described by Slater determinants in a so-called Chern basis, and the exactly solvable charge $\pm1$ excitations found in [arXiv:2009.14200] are the lowest charge excitations up to system sizes $8\times8$ (for restricted Hilbert space) in the chiral-flat limit. We also find that the Flat Metric Condition (FMC) used in [arXiv:2009.11301,2009.11872,2009.12376,2009.13530,2009.14200] for obtaining a series of exact ground-states and excitations holds in a large parameter space. For $ν=-3$, the ground state is the spin and valley polarized Chern insulator with $ν_C=\pm1$ at $w_0/w_1\lesssim0.9$ (0.3) with (without) FMC. At $ν=-2$, we can only numerically access the valley polarized sector, and we find a spin ferromagnetic phase when $w_0/w_1\gtrsim0.5t$ where $t\in[0,1]$ is the factor of rescaling of the actual TBG bandwidth, and a spin singlet phase otherwise, confirming the perturbative calculation [arXiv:2009.13530]. The analytic FMC ground state is, however, predicted in the intervalley coherent sector which we cannot access [arXiv:2009.13530]. For $ν=-3$ with/without FMC, when $w_0/w_1$ is large, the finite-size gap $Δ$ to the neutral excitations vanishes, leading to phase transitions. Further analysis of the ground state momentum sectors at $ν=-3$ suggests a competition among (nematic) metal, momentum $M_M$ ($π$) stripe and $K_M$-CDW orders at large $w_0/w_1$.