论文标题
细胞复合神经网络
Cell Complex Neural Networks
论文作者
论文摘要
细胞复合物是由称为细胞的简单块构成的拓扑空间。它们概括了构成实际应用重要领域的图形,简单复合物和多面体复合物。它们还提供了一种组合形式主义,允许包含限制性结构(例如图形和网格)的复杂关系。在本文中,我们提出了\ textbf {细胞复合物(CXNS)},这是一种通用,组合和统一的结构,用于在细胞复合物上执行神经网络型计算。我们在细胞复合体上引入了一个细胞间消息传递方案,该方案将基础空间的拓扑结合在一起,并将消息传递方案推广到图形。最后,我们介绍了一个统一的细胞复杂编码器框架,该框架可以为欧几里得空间内的给定复合物的细胞学习表示。特别是,我们展示了在特殊情况下,如何给出我们的单元复杂自动编码器构造\ textbf {cell2vec},这是Node2Vec的概括。
Cell complexes are topological spaces constructed from simple blocks called cells. They generalize graphs, simplicial complexes, and polyhedral complexes that form important domains for practical applications. They also provide a combinatorial formalism that allows the inclusion of complicated relationships of restrictive structures such as graphs and meshes. In this paper, we propose \textbf{Cell Complexes Neural Networks (CXNs)}, a general, combinatorial and unifying construction for performing neural network-type computations on cell complexes. We introduce an inter-cellular message passing scheme on cell complexes that takes the topology of the underlying space into account and generalizes message passing scheme to graphs. Finally, we introduce a unified cell complex encoder-decoder framework that enables learning representation of cells for a given complex inside the Euclidean spaces. In particular, we show how our cell complex autoencoder construction can give, in the special case \textbf{cell2vec}, a generalization for node2vec.