论文标题
肾小管形状意识数据生成用于医学成像中语义分割的数据生成
Tubular Shape Aware Data Generation for Semantic Segmentation in Medical Imaging
论文作者
论文摘要
胸部X射线是人体最广泛的检查之一。在介入放射学中,其使用经常与可视化各种管子样物体(例如穿刺针头,指导鞘,电线和导管)相关。因此,这些管子样对象在X射线图像中的检测和精确定位具有最大的值,它催化了准确的目标特异性分割算法的发展。与其他医学成像任务相似,管子的手动像素注释是一个资源消费的过程。在这项工作中,我们旨在通过使用人工数据来缓解缺乏带注释的图像。具体而言,我们提出了一种用于合成管形对象的合成数据生成的方法,并具有先前形状约束的生成对抗网络。我们的方法消除了对配对的图像数据的需求,并且只需要一个弱标记的数据集(10--20张图像)即可达到完全监督模型的准确性。我们报告该方法在X射线图像中分割管和导管的任务的适用性,而结果也应适用于其他成像方式。
Chest X-ray is one of the most widespread examinations of the human body. In interventional radiology, its use is frequently associated with the need to visualize various tube-like objects, such as puncture needles, guiding sheaths, wires, and catheters. Detection and precise localization of these tube-like objects in the X-ray images is, therefore, of utmost value, catalyzing the development of accurate target-specific segmentation algorithms. Similar to the other medical imaging tasks, the manual pixel-wise annotation of the tubes is a resource-consuming process. In this work, we aim to alleviate the lack of the annotated images by using artificial data. Specifically, we present an approach for synthetic data generation of the tube-shaped objects, with a generative adversarial network being regularized with a prior-shape constraint. Our method eliminates the need for paired image--mask data and requires only a weakly-labeled dataset (10--20 images) to reach the accuracy of the fully-supervised models. We report the applicability of the approach for the task of segmenting tubes and catheters in the X-ray images, whereas the results should also hold for the other imaging modalities.