论文标题
一阶相变的重力波产生的混合模拟
A hybrid simulation of gravitational wave production in first-order phase transitions
论文作者
论文摘要
Lisa望远镜将提供第一个机会,以探测接近Electroweak量表的一阶相变的情况。到目前为止,很明显,对GW频谱的主要贡献来自通过等离子体传播的声波。 GW频谱的当前估计值基于与血浆相互作用或分析近似值的标量场(所谓声音壳模型)相互作用的数值模拟。在这项工作中,我们提出了一种新颖的设置,以从声波中计算GW光谱。我们使用一种混合方法,该方法使用1D模拟(带有球形对称性)来进化碰撞后单个气泡的速度和焓谱,并将其嵌入到多个气泡碰撞的3D实现中,假设速度和焓的线性叠加。与3D流体动力模拟相比,我们方法的主要优点是它不需要解决气泡壁厚的尺度。这使我们的模拟更加经济,并且只有两个相关的物理长度尺度是气泡尺寸和壳厚度(反过来又被盒子尺寸和网格间距所包围)。降低的成本允许进行广泛的参数研究,我们提供了最终GW频谱的参数化,这是壁速度和流体动能的函数。
The LISA telescope will provide the first opportunity to probe the scenario of a first-order phase transition happening close to the electroweak scale. By now, it is evident that the main contribution to the GW spectrum comes from the sound waves propagating through the plasma. Current estimates of the GW spectrum are based on numerical simulations of a scalar field interacting with the plasma or on analytical approximations -- the so-called sound shell model. In this work we present a novel setup to calculate the GW spectra from sound waves. We use a hybrid method that uses a 1d simulation (with spherical symmetry) to evolve the velocity and enthalpy profiles of a single bubble after collision and embed it in a 3d realization of multiple bubble collisions, assuming linear superposition of the velocity and enthalpy. The main advantage of our method compared to 3d hydrodynamic simulations is that it does not require to resolve the scale of bubble wall thickness. This makes our simulations more economical and the only two relevant physical length scales that enter are the bubble size and the shell thickness (that are in turn enclosed by the box size and the grid spacing). The reduced costs allow for extensive parameter studies and we provide a parametrization of the final GW spectrum as a function of the wall velocity and the fluid kinetic energy.