论文标题

稀疏量化光谱群集

Sparse Quantized Spectral Clustering

论文作者

Liao, Zhenyu, Couillet, Romain, Mahoney, Michael W.

论文摘要

给定较大的数据矩阵,稀疏,量化和/或执行其他入门非线性操作可以具有许多好处,从加快核心数值线性代数问题的迭代算法到提供非线性过滤器的迭代算法到设计最先进的神经网络模型。在这里,我们从随机矩阵理论中利用工具来确切地陈述矩阵在这种非线性转换下如何变化。特别是,我们表明,即使在急剧的稀疏/量化下,内容典型的特征结构也很少发生,因此,在非常积极的稀疏或量化的光谱群集中,几乎没有下游性能损失发生。我们说明了这些结果如何取决于非线性,我们表征了一个相变,超出了光谱聚类的可能性,并且我们表明了这种非线性转换何时可以引入虚假的非信息特征向量。

Given a large data matrix, sparsifying, quantizing, and/or performing other entry-wise nonlinear operations can have numerous benefits, ranging from speeding up iterative algorithms for core numerical linear algebra problems to providing nonlinear filters to design state-of-the-art neural network models. Here, we exploit tools from random matrix theory to make precise statements about how the eigenspectrum of a matrix changes under such nonlinear transformations. In particular, we show that very little change occurs in the informative eigenstructure even under drastic sparsification/quantization, and consequently that very little downstream performance loss occurs with very aggressively sparsified or quantized spectral clustering. We illustrate how these results depend on the nonlinearity, we characterize a phase transition beyond which spectral clustering becomes possible, and we show when such nonlinear transformations can introduce spurious non-informative eigenvectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源