论文标题
用于学习半空间的多项式时间算法
A Polynomial Time Algorithm for Learning Halfspaces with Tsybakov Noise
论文作者
论文摘要
我们研究了Tsybakov噪声存在的PAC学习均匀半空间的问题。在Tsybakov噪声模型中,每个样品的标签都以对抗控制的概率独立翻转,对于一小部分样本,可以任意接近$ 1/2 $。 {\ em我们为这个基本学习问题提供了第一个多项式时间算法。}我们的算法在任何所需的准确性$ε$中都学会了真正的半空间,并在广泛的行为良好的分布家庭中取得了成功。在我们的工作之前,此问题的唯一算法需要$ 1/ε$的准聚运行时间。 我们的算法采用了最近开发的减少\ cite {dktz20b},从学习到认证候选人半空间的非偏见。这项先前的工作开发了基于多项式回归的准多项式时间证书算法。 {\ em当前论文的主要技术贡献是第一个多项式时间证书算法。}从非平凡的温暖开始开始,我们的算法执行了一个小说的“双赢”迭代过程,在每个步骤中,在每个步骤中,都可以找到一个有效的证书,或者在当前的半空间和真实的半个空间之间提高了角度。我们对各向同性对数凸线分布的热启动算法涉及许多可能引起更广泛关注的分析工具。其中包括一种新的有效方法,用于重新加权分布,以使其近来的IT以及对度$ 2 $ chow参数的新颖表征。
We study the problem of PAC learning homogeneous halfspaces in the presence of Tsybakov noise. In the Tsybakov noise model, the label of every sample is independently flipped with an adversarially controlled probability that can be arbitrarily close to $1/2$ for a fraction of the samples. {\em We give the first polynomial-time algorithm for this fundamental learning problem.} Our algorithm learns the true halfspace within any desired accuracy $ε$ and succeeds under a broad family of well-behaved distributions including log-concave distributions. Prior to our work, the only previous algorithm for this problem required quasi-polynomial runtime in $1/ε$. Our algorithm employs a recently developed reduction \cite{DKTZ20b} from learning to certifying the non-optimality of a candidate halfspace. This prior work developed a quasi-polynomial time certificate algorithm based on polynomial regression. {\em The main technical contribution of the current paper is the first polynomial-time certificate algorithm.} Starting from a non-trivial warm-start, our algorithm performs a novel "win-win" iterative process which, at each step, either finds a valid certificate or improves the angle between the current halfspace and the true one. Our warm-start algorithm for isotropic log-concave distributions involves a number of analytic tools that may be of broader interest. These include a new efficient method for reweighting the distribution in order to recenter it and a novel characterization of the spectrum of the degree-$2$ Chow parameters.