论文标题

我的身体是笼子:形态在基于图的不兼容控制中的作用

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

论文作者

Kurin, Vitaly, Igl, Maximilian, Rocktäschel, Tim, Boehmer, Wendelin, Whiteson, Shimon

论文摘要

多任务增强学习是一种具有更好性能,概括,数据效率和鲁棒性的模型的有前途的方法。大多数现有的工作仅限于兼容设置,在该设置中,国家和行动空间维度在整个任务之间相同。图形神经网络(GNN)是解决不兼容环境的一种方法,因为它们可以处理任意大小的图表。它们还允许从业者注入输入图的结构中编码的偏差。基于图的连续控制中的现有工作使用代理的物理形态来构建输入图,即将肢体特征编码为节点标签,并使用边缘连接节点,如果它们相应的肢体是物理连接的。在这项工作中,我们对现有方法进行了一系列消融,这些消融表明图中编码的形态信息并不能改善其性能。以以下假设的推动,即,从图形结构中获得的任何好处GNN提取物都超过了它们在消息传递中创造的困难,我们还建议Amorpheus是一种基于变压器的方法。进一步的结果表明,尽管Amorpheus忽略了GNNS编码的形态学信息,但它基本上优于基于GNN的方法,这些方法使用形态学信息来定义消息通话方案。

Multitask Reinforcement Learning is a promising way to obtain models with better performance, generalisation, data efficiency, and robustness. Most existing work is limited to compatible settings, where the state and action space dimensions are the same across tasks. Graph Neural Networks (GNN) are one way to address incompatible environments, because they can process graphs of arbitrary size. They also allow practitioners to inject biases encoded in the structure of the input graph. Existing work in graph-based continuous control uses the physical morphology of the agent to construct the input graph, i.e., encoding limb features as node labels and using edges to connect the nodes if their corresponded limbs are physically connected. In this work, we present a series of ablations on existing methods that show that morphological information encoded in the graph does not improve their performance. Motivated by the hypothesis that any benefits GNNs extract from the graph structure are outweighed by difficulties they create for message passing, we also propose Amorpheus, a transformer-based approach. Further results show that, while Amorpheus ignores the morphological information that GNNs encode, it nonetheless substantially outperforms GNN-based methods that use the morphological information to define the message-passing scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源