论文标题

使用单电介质纳米球对激子排放的方向性调节

Directivity modulation of exciton emission using single dielectric nanospheres

论文作者

Fang, Jie, Wang, Mingsong, Yao, Kan, Zhang, Tianyi, Krasnok, Alex, Jiang, Taizhi, Choi, Junho, Kahn, Ethan, Korgel, Brian A., Terrones, Mauricio, Li, Xiaoqin, Alu, Andrea, Zheng, Yuebing

论文摘要

与纳米装饰物耦合发射器是一种有效的策略,可以以高效率在次波长度上控制光发射。低损坏的电介质纳米antennas为此目的特别有希望,这是由于其强烈的MIE共鸣。本文中,我们探索了一个高度微型化的平台,用于控制基于单个亚波长的SI纳米球(SINSS)的发射平台,以调节二维过渡金属二分法源(2D TMDS)的方向激发和激励发射。用于偶极子球形混合系统的修改MIE理论被得出以指导理想的调制性能的最佳设计。在532 nm激光激发和单层WS2中的635 nm激发激发和635 nm激发子发射中,可以对可控的前向强度比进行实验验证。沿所有设备方向的多功能光发射控制均为不同的发射器和激发波长实现,从而受益于罪恶的尺寸控制和各向同性形状。同时通过可见波长的单个罪进行激发和发射的调节显着提高了TMD激子发射的效率和方向性,并导致多功能集成光子学的潜力。总体而言,我们的工作为纳米光子学和极化系统打开了有希望的机会,从而有效地操纵了光 - 互动的有效操纵,增强和可重构性。

Coupling emitters with nanoresonators is an effective strategy to control light emission at the subwavelength scale with high efficiency. Low-loss dielectric nanoantennas hold particular promise for this purpose, owing to their strong Mie resonances. Herein, we explore a highly miniaturized platform for the control of emission based on individual subwavelength Si nanospheres (SiNSs) to modulate the directional excitation and exciton emission of two-dimensional transition metal dichalcogenides (2D TMDs). A modified Mie theory for dipole-sphere hybrid systems is derived to instruct the optimal design for desirable modulation performance. Controllable forward-to-backward intensity ratios are experimentally validated in 532 nm laser excitation and 635 nm exciton emission from a monolayer WS2. Versatile light emission control along all device orientations is achieved for different emitters and excitation wavelengths, benefiting from the facile size control and isotropic shape of SiNSs. Simultaneous modulation of excitation and emission via a single SiNS at visible wavelengths significantly improves the efficiency and directivity of TMD exciton emission and leads to the potential of multifunctional integrated photonics. Overall, our work opens promising opportunities for nanophotonics and polaritonic systems, enabling efficient manipulation, enhancement and reconfigurability of light-matter interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源