论文标题

社交网络分析中差异隐私的应用:一项调查

Applications of Differential Privacy in Social Network Analysis: A Survey

论文作者

Jiang, Honglu, Pei, Jian, Yu, Dongxiao, Yu, Jiguo, Gong, Bei, Cheng, Xiuzhen

论文摘要

差异隐私可有效地共享信息和保存隐私,并提供强大的保证。由于社交网络分析已在许多应用中广泛采用,因此为应用差异隐私的应用开辟了一个新的领域。在本文中,我们提供了一项全面的调查,该调查连接了差异隐私和社交网络分析中应用程序的基本原理。我们对差异隐私和主要变体的基础进行了简洁的综述,并讨论了如何将差异隐私应用于社交网络分析,包括社交网络中的隐私攻击,社交网络分析中的差异隐私类型以及一系列流行的任务,例如学位分配分析,子级计数和优势。我们还讨论了未来研究的一系列挑战。

Differential privacy is effective in sharing information and preserving privacy with a strong guarantee. As social network analysis has been extensively adopted in many applications, it opens a new arena for the application of differential privacy. In this article, we provide a comprehensive survey connecting the basic principles of differential privacy and applications in social network analysis. We present a concise review of the foundations of differential privacy and the major variants and discuss how differential privacy is applied to social network analysis, including privacy attacks in social networks, types of differential privacy in social network analysis, and a series of popular tasks, such as degree distribution analysis, subgraph counting and edge weights. We also discuss a series of challenges for future studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源