论文标题

DML-GANR:具有生成对抗网络正规化的深度度量学习,用于高空间分辨率遥感图像检索

DML-GANR: Deep Metric Learning With Generative Adversarial Network Regularization for High Spatial Resolution Remote Sensing Image Retrieval

论文作者

Cao, Yun, Wang, Yuebin, Peng, Junhuan, Zhang, Liqiang, Xu, Linlin, Yan, Kai, Li, Lihua

论文摘要

借助少数标记的样品进行培训,它可以节省大量的人力和物质资源,尤其是当高空间分辨率遥感图像(HSR-RSIS)大幅增加时。但是,许多深层模型在使用少量标记的样品时面临过度拟合的问题。这可能会降低HSRRSI检索准确性。为了通过小型培训样本获得更准确的HSR-RSI检索性能,我们将使用用于HSR-RSI检索的生成对抗网络正则(DML-GANR)开发一种深度度量学习方法。 DML-GANR从高级特征提取(HFE)开始提取高级特征,其中包括卷积层和完全连接(FC)层。每个FC层都是通过深度度量学习(DML)构建的,以最大化阶级变化并最大程度地减少类内变化。采用生成对抗网络(GAN)来减轻过度拟合的问题并验证提取的高级功能的质量。 DML-GANR通过自定义方法进行了优化,并获得了最佳参数。三个数据集的实验结果表明,在HSR-RSI检索中,DML-GANR的性能优于最先进的技术。

With a small number of labeled samples for training, it can save considerable manpower and material resources, especially when the amount of high spatial resolution remote sensing images (HSR-RSIs) increases considerably. However, many deep models face the problem of overfitting when using a small number of labeled samples. This might degrade HSRRSI retrieval accuracy. Aiming at obtaining more accurate HSR-RSI retrieval performance with small training samples, we develop a deep metric learning approach with generative adversarial network regularization (DML-GANR) for HSR-RSI retrieval. The DML-GANR starts from a high-level feature extraction (HFE) to extract high-level features, which includes convolutional layers and fully connected (FC) layers. Each of the FC layers is constructed by deep metric learning (DML) to maximize the interclass variations and minimize the intraclass variations. The generative adversarial network (GAN) is adopted to mitigate the overfitting problem and validate the qualities of extracted high-level features. DML-GANR is optimized through a customized approach, and the optimal parameters are obtained. The experimental results on the three data sets demonstrate the superior performance of DML-GANR over state-of-the-art techniques in HSR-RSI retrieval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源