论文标题

随机抽样效果偏爱手册而不是数字触点跟踪

Stochastic sampling effects favor manual over digital contact tracing

论文作者

Mancastroppa, Marco, Castellano, Claudio, Vezzani, Alessandro, Burioni, Raffaella

论文摘要

有症状的个体分离,追踪和测试其无症状接触是减轻当前Covid-19大流行的基本策略。传染连锁店的破裂取决于两种互补策略:基于访谈的手动重建联系人和一个数字(基于应用程序)的隐私权触点跟踪。我们使用量身定制的模型参数来比较它们的有效性,以描述活动驱动的模型中的SARS-COV-2扩散,这是一个通用的经验验证的网络动力学框架。我们表明,即使为了追踪触点的同等可能性,手动跟踪的性能也比数字协议更好地表现得更好,还考虑了手动程序的固有延迟和有限的可扩展性。通过在逐案手册重建触点期间发生的随机抽样来解释这一结果,与数字追踪的本质上预先预处理的性质形成鲜明对比,这是由每个人决定采用该应用程序或不采用该应用程序的本质上的预先预处理性质。手动跟踪的更好性能通过代理行为的异质性增强了:不采用该应用程序的超级传播者完全看不见数字触点跟踪,而由于它们的多个触点,因此可以轻松地手动追踪它们。我们表明,这种固有的差异使手动程序在现实的混合协议中占主导地位。

Isolation of symptomatic individuals, tracing and testing of their nonsymptomatic contacts are fundamental strategies for mitigating the current COVID-19 pandemic. The breaking of contagion chains relies on two complementary strategies: manual reconstruction of contacts based on interviews and a digital (app-based) privacy-preserving contact tracing. We compare their effectiveness using model parameters tailored to describe SARS-CoV-2 diffusion within the activity-driven model, a general empirically validated framework for network dynamics. We show that, even for equal probability of tracing a contact, manual tracing robustly performs better than the digital protocol, also taking into account the intrinsic delay and limited scalability of the manual procedure. This result is explained in terms of the stochastic sampling occurring during the case-by-case manual reconstruction of contacts, contrasted with the intrinsically prearranged nature of digital tracing, determined by the decision to adopt the app or not by each individual. The better performance of manual tracing is enhanced by heterogeneity in agent behavior: superspreaders not adopting the app are completely invisible to digital contact tracing, while they can be easily traced manually, due to their multiple contacts. We show that this intrinsic difference makes the manual procedure dominant in realistic hybrid protocols.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源