论文标题

在高阶传输统计中揭示了较强的相关性:一种非交叉近似方法

Revealing strong correlations in higher order transport statistics: a noncrossing approximation approach

论文作者

Erpenbeck, André, Gull, Emanuel, Cohen, Guy

论文摘要

我们提出了一种基于传播器非交叉近似(NCA)的非平衡量子系统的完整计数统计量的方法。这种数值廉价的方法可以为扩展参数制度提供高阶累积物,从而使其具有多种目的。我们将NCA的结果与Born-Markov量子主方程(QME)结果进行比较,以表明它们可以访问不同的物理学,并与数值确切的Inch Norm norm量子蒙特卡洛数据进行评估以评估其有效性。为了证明其力量,采用NCA方法来研究无quilibrium anderson杂质模型中高阶累积物的相关性的影响。检查了四个最低阶累积物,从而使我们能够确定相关效应对基础运输分布产生了深远的影响。因此,高阶累积物被证明是无法通过简单QME方法捕获的方式的近代相关性的代理。

We present a method for calculating the full counting statistics of a nonequilibrium quantum system based on the propagator noncrossing approximation (NCA). This numerically inexpensive method can provide higher order cumulants for extended parameter regimes, rendering it attractive for a wide variety of purposes. We compare NCA results to Born-Markov quantum master equations (QME) results to show that they can access different physics, and to numerically exact inchworm quantum Monte-Carlo data to assess their validity. As a demonstration of its power, the NCA method is employed to study the impact of correlations on higher order cumulants in the nonequilibrium Anderson impurity model. The four lowest order cumulants are examined, allowing us to establish that correlation effects have a profound influence on the underlying transport distributions. Higher order cumulants are therefore demonstrated to be a proxy for the presence of Kondo correlations in a way that cannot be captured by simple QME methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源