论文标题
空间应用的纳米光材料
Nanophotonic materials for space applications
论文作者
论文摘要
空间体现了任何材料技术的最终测试床环境。空间的严峻条件,由于温度的极端变化,缺乏重力和大气,强烈的太阳能和宇宙辐射以及发射和部署的机械应力,代表了一系列多方面的挑战。我们设计的材料不仅必须满足这些挑战,而且还需要这样做,同时将整体质量保持在最低限度,并保证长时间的性能,而没有修复的机会。纳米光材料 - 在与光波长相当的尺度上体现结构变化的材料 - 为解决其中一些困难提供了机会。在这里,我们研究了纳米光子学和纳米制作的进步如何使超薄和轻量级结构具有无与伦比的能力,可以在广泛的电磁频谱上塑造轻质物体相互作用。从可以在太空中制造的太阳能电池板到推进光的应用,下一代轻质和多功能光子材料都可以影响现有技术,并为新的太空技术铺平道路。
Space exemplifies the ultimate test-bed environment for any materials technology. The harsh conditions of space, with extreme temperature changes, lack of gravity and atmosphere, intense solar and cosmic radiation, and mechanical stresses of launch and deployment, represent a multifaceted set of challenges. The materials we engineer must not only meet these challenges, but they need to do so while keeping overall mass to a minimum and guaranteeing performance over long periods of time with no opportunity for repair. Nanophotonic materials -- materials that embody structural variations on a scale comparable to the wavelength of light -- offer opportunities for addressing some of these difficulties. Here, we examine how advances in nanophotonics and nanofabrication are enabling ultrathin and lightweight structures with unparalleled ability to shape light-matter interactions over a broad electromagnetic spectrum. From solar panels that can be fabricated in space to applications of light for propulsion, the next generation of lightweight and multifunctional photonic materials stands to both impact existing technologies and pave the way for new space technologies.