论文标题

循环培养皿网中的可逆计算

Reversible Computation in Cyclic Petri Nets

论文作者

Philippou, Anna, Psara, Kyriaki

论文摘要

培养皿网是一种用于建模和推理分布式系统的数学语言。在本文中,我们提出了一种用于嵌入可逆性的方法,即,在操作过程中的任何时刻,逆转执行的操作顺序的能力。具体而言,我们介绍了机械和相关的语义,以支持可逆性的三种主要形式,即回溯,因果关系逆转和因果阶外逆转,以循环petri网的变化,在这些变化的情况下,在这些变化中,在这些变化中,代币持续存在,并以彼此的身份与彼此区分。我们的形式主义受生物化学应用的影响,但该方法可以应用于具有可逆性的广泛问题。特别是,我们使用ERK信号通路的模型来证明我们的方法的适用性,这是一个本质上具有可逆行为的示例。

Petri nets are a mathematical language for modeling and reasoning about distributed systems. In this paper we propose an approach to Petri nets for embedding reversibility, i.e., the ability of reversing an executed sequence of operations at any point during operation. Specifically, we introduce machinery and associated semantics to support the three main forms of reversibility namely, backtracking, causal reversing, and out-of-causal-order reversing in a variation of cyclic Petri nets where tokens are persistent and are distinguished from each other by an identity. Our formalism is influenced by applications in biochemistry but the methodology can be applied to a wide range of problems that feature reversibility. In particular, we demonstrate the applicability of our approach with a model of the ERK signalling pathway, an example that inherently features reversible behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源