论文标题

MRI数据的正则压缩:关节重建和编码的模块化优化

Regularized Compression of MRI Data: Modular Optimization of Joint Reconstruction and Coding

论文作者

Corona, Veronica, Dar, Yehuda, Williams, Guy, Schönlieb, Carola-Bibiane

论文摘要

磁共振成像(MRI)处理链始于关键的采集阶段,该阶段为医学诊断的图像重建提供了原始数据。该流程通常包括一个近乎无数的数据压缩阶段,该阶段可以以二进制格式进行数字存储和/或传输。在这项工作中,我们提出了一个框架,以优化MRI重建和有损压缩,从而产生了医学图像的压缩表示,从而改善了质量和比特率之间的权衡。此外,我们证明,与基于无损压缩的设置相比,有损压缩甚至可以提高重建质量。我们的方法具有模块化优化结构,该结构使用乘数的交替方向方法(ADMM)技术和最先进的图像压缩技术(BPG)作为黑盒模块迭代应用。这建立了与有损压缩标准兼容的医学数据压缩方法。所提出的算法的主要新颖性是在模块化压缩过程中添加了总变化正则化,从而导致较高质量的解压缩图像,而在解压缩阶段时/之后/之后进行任何其他处理。我们的实验表明,与关节任务的非调数溶液相比,我们基于正规化的联合MRI重建和压缩方法通常可以在高率下的4至9 dB中获得显着的PSNR增长。与基于正则化的解决方案相比,我们的优化方法在高比特速率下提供了0.5至1 dB之间的PSNR增益,这是医疗图像压缩的范围。

The Magnetic Resonance Imaging (MRI) processing chain starts with a critical acquisition stage that provides raw data for reconstruction of images for medical diagnosis. This flow usually includes a near-lossless data compression stage that enables digital storage and/or transmission in binary formats. In this work we propose a framework for joint optimization of the MRI reconstruction and lossy compression, producing compressed representations of medical images that achieve improved trade-offs between quality and bit-rate. Moreover, we demonstrate that lossy compression can even improve the reconstruction quality compared to settings based on lossless compression. Our method has a modular optimization structure, implemented using the alternating direction method of multipliers (ADMM) technique and the state-of-the-art image compression technique (BPG) as a black-box module iteratively applied. This establishes a medical data compression approach compatible with a lossy compression standard of choice. A main novelty of the proposed algorithm is in the total-variation regularization added to the modular compression process, leading to decompressed images of higher quality without any additional processing at/after the decompression stage. Our experiments show that our regularization-based approach for joint MRI reconstruction and compression often achieves significant PSNR gains between 4 to 9 dB at high bit-rates compared to non-regularized solutions of the joint task. Compared to regularization-based solutions, our optimization method provides PSNR gains between 0.5 to 1 dB at high bit-rates, which is the range of interest for medical image compression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源