论文标题
视频表征和识别的自我发项集合网络
Self-attention aggregation network for video face representation and recognition
论文作者
论文摘要
基于自我注意力机制的模型已成功地分析时间数据,并已广泛用于自然语言领域。我们为基于自我发挥机制的视频面部表示和识别提供了一种新的模型体系结构。我们的方法可用于具有单一身份和多个身份的视频。据我们所知,没有人探讨了以多种身份考虑视频的聚合方法。拟议的方法利用现有模型来为每个视频框架(例如Arcface和MobilefaceNet)获得面部表示,而聚合模块通过考虑框架及其质量得分的顺序,为视频汇总面部表示向量。我们在公共数据集上展示了用于视频面部识别的经验结果,称为IJB-C,以表明自我发项式聚合网络(SAAN)的表现优于天真的平均池。此外,我们根据公开可用的UMDFASE数据集引入了一个新的多身份视频数据集,并从GIPHY收集了GIF。我们表明,萨恩能够在视频中为单个身份和多个身份产生紧凑的面部表示。数据集和源代码将公开可用。
Models based on self-attention mechanisms have been successful in analyzing temporal data and have been widely used in the natural language domain. We propose a new model architecture for video face representation and recognition based on a self-attention mechanism. Our approach could be used for video with single and multiple identities. To the best of our knowledge, no one has explored the aggregation approaches that consider the video with multiple identities. The proposed approach utilizes existing models to get the face representation for each video frame, e.g., ArcFace and MobileFaceNet, and the aggregation module produces the aggregated face representation vector for video by taking into consideration the order of frames and their quality scores. We demonstrate empirical results on a public dataset for video face recognition called IJB-C to indicate that the self-attention aggregation network (SAAN) outperforms naive average pooling. Moreover, we introduce a new multi-identity video dataset based on the publicly available UMDFaces dataset and collected GIFs from Giphy. We show that SAAN is capable of producing a compact face representation for both single and multiple identities in a video. The dataset and source code will be publicly available.