论文标题

关于电力系统频率控制稳定的讨论

A Discussion on Stabilization of Frequency Control for Power Systems

论文作者

Nguyen, Binh-Minh, Tran-Huynh, Ngoc, Kawanishi, Michihiro, Narikiyo, Tatsuo

论文摘要

如何通过分散的方式实际维持大型电力系统的频率稳定性是一个简单但非平凡的问题。换句话说,是否可以在不了解其他受控领域并且对网络结构的了解较少的情况下设计任何本地控制器?关于本地区域之间物理互动的特殊特性,本文提出了两种解决此问题的现有理论。首先,被动性理论被证明是使用摇摆方程的频率控制问题的候选者。基于挥杆动力学的被动性,可以通过为每个局部区域设计一个被动控制器来确保系统稳定性。我们进一步将被动方法扩展到具有未知通信延迟的层次分散控制系统。其次,我们讨论了使用区域控制误差的通用频率变量(GFV)在频率控制问题上的应用。设计了每个本地控制器,使每个本地子系统都遵循标称模型集。利用GFV理论,我们提出了一个足够保证系统稳定性的条件。可以通过从GFV和物理相互作用矩阵的特征值建立的有限的不平等值来方便地测试条件。通过数值模拟的设计示例讨论了两种理论的有效性,限制和挑战。

How to practically maintain the frequency stability of large-scale power systems by a decentralized way is a simple but non-trivial question. In other words, is it possible to design any local controller without understanding the other controlled areas and with less understanding of network structure? With respect to the special properties of physical interaction between the local areas, this paper suggests two existing theories for tackling this issue. Firstly, passivity theory is shown to be a candidate for frequency control problem using swing equation. Based on the passivity of swing dynamics, it is possible to guarantee the system stability by designing for each local area a passive controller. We further extend the passivity approach to the hierarchically decentralized control system with unknown communication delay. Secondly, we discuss the application of generalized frequency variable (GFV) to the frequency control problem using area-control-error. Each local controller is designed such that each local subsystem follows a nominal model set. Utilizing GFV theory, we present a triad of conditions that sufficiently guarantee the system stability. The conditions can be tested conveniently by a limited set of inequalities established from the GFV and the eigenvalues of the physical interaction matrix. The effectiveness, limitation, and challenge of two theories are discussed by design examples with numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源