论文标题

Schrödinger操作员的界限,在半线上受到耗散障碍的扰动

Bounds for Schrödinger operators on the half-line perturbed by dissipative barriers

论文作者

Stepanenko, Alexei

论文摘要

我们考虑$ h_r = -d^2/ d x^2 + q + q +iγχ_{[0,r]} $的Schrödinger运算符,用于大$ r> 0 $,其中$ q \ in l^1(0,\ infty)$和$γ> 0 $。特征值和特征值数量的最大幅度的边界已证明。这些界限补充了适用于该系统的现有通用界限,适用于足够大的$ r $。

We consider Schrödinger operators of the form $H_R = - d^2/ d x^2 + q + i γχ_{[0,R]}$ for large $R>0$, where $q \in L^1(0,\infty)$ and $γ> 0$. Bounds for the maximum magnitude of an eigenvalue and for the number of eigenvalues are proved. These bounds complement existing general bounds applied to this system, for sufficiently large $R$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源