论文标题

jarzynski有条件随机工作的平等

Jarzynski equality for conditional stochastic work

论文作者

Sone, Akira, Deffner, Sebastian

论文摘要

已经确定,用于古典,哈密顿动力学的包容性工作等同于孤立量子系统中的两次能量测量范式。但是,已经出现了许多其他量子工作概念,因此出现了自然的问题,是否有其他量子概念是否可以为纯粹的经典考虑提供动力。在目前的分析中,我们提出了用于古典,哈密顿动力学的条件随机工作,该工作灵感来自一次性测量方法。这个新颖的概念建立在能量在初始能量表面上的期望值的变化。作为主要结果,我们获得了广义的jarzynski平等和最大的最大工作定理,这说明了该过程的非绝热性。我们的发现用参数谐波振荡器说明了。

It has been established that the inclusive work for classical, Hamiltonian dynamics is equivalent to the two-time energy measurement paradigm in isolated quantum systems. However, a plethora of other notions of quantum work has emerged, and thus the natural question arises whether any other quantum notion can provide motivation for purely classical considerations. In the present analysis, we propose the conditional stochastic work for classical, Hamiltonian dynamics, which is inspired by the one-time measurement approach. This novel notion is built upon the change of expectation value of the energy conditioned on the initial energy surface. As main results we obtain a generalized Jarzynski equality and a sharper maximum work theorem, which account for how non-adiabatic the process is. Our findings are illustrated with the parametric harmonic oscillator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源