论文标题

热节流对基于CPU的边缘设备长期视觉推断的影响

Impact of Thermal Throttling on Long-Term Visual Inference in a CPU-based Edge Device

论文作者

Benoit-Cattin, Théo, Velasco-Montero, Delia, Fernández-Berni, Jorge

论文摘要

边缘视觉推断的许多应用程序方案,例如机器人技术或环境监测,最终需要长时间的连续操作。在此期间,处理器温度在保持规定的帧速率方面起着至关重要的作用。特别是,卷积神经网络(CNN)的重量计算负荷可能导致热门节流,因此在几秒钟内性能降解。在本文中,我们报告并分析了80个不同案例的长期性能,这些案例是在4个软件框架和2个没有主动冷却的情况下运行5个CNN模型和2个操作系统的长期性能。这项综合研究是在稳定的室内条件下在低成本边缘平台(Raspberry Pi 4B(RPI4B))上进行的。结果表明,基于磁滞的主动冷却在所有情况下都阻止了热节流,从而将吞吐量提高到大约90%,而不是冷却。有趣的是,主动冷却过程中的风扇使用范围从33%到65%不等。鉴于风扇对整个系统的功耗的影响,这些结果强调了适当选择CNN模型和软件组件的重要性。为了评估室外应用中的性能,我们将外部温度传感器与RPI4B集成在一起,并进行了一组实验,没有在环境温度的宽间隔内没有主动冷却,范围为22°C至36°C。在该间隔中获得的最大吞吐量测量了高达27.7%的变化。这表明,如果无法应用主动冷却,环境温度是关键参数。

Many application scenarios of edge visual inference, e.g., robotics or environmental monitoring, eventually require long periods of continuous operation. In such periods, the processor temperature plays a critical role to keep a prescribed frame rate. Particularly, the heavy computational load of convolutional neural networks (CNNs) may lead to thermal throttling and hence performance degradation in few seconds. In this paper, we report and analyze the long-term performance of 80 different cases resulting from running 5 CNN models on 4 software frameworks and 2 operating systems without and with active cooling. This comprehensive study was conducted on a low-cost edge platform, namely Raspberry Pi 4B (RPi4B), under stable indoor conditions. The results show that hysteresis-based active cooling prevented thermal throttling in all cases, thereby improving the throughput up to approximately 90% versus no cooling. Interestingly, the range of fan usage during active cooling varied from 33% to 65%. Given the impact of the fan on the power consumption of the system as a whole, these results stress the importance of a suitable selection of CNN model and software components. To assess the performance in outdoor applications, we integrated an external temperature sensor with the RPi4B and conducted a set of experiments with no active cooling in a wide interval of ambient temperature, ranging from 22 °C to 36 °C. Variations up to 27.7% were measured with respect to the maximum throughput achieved in that interval. This demonstrates that ambient temperature is a critical parameter in case active cooling cannot be applied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源