论文标题

比较网络模块化结构的双向方法

A bi-directional approach to comparing the modular structure of networks

论文作者

Straulino, Daniel, Landman, Mattie, O'Clery, Neave

论文摘要

在这里,我们提出了一种比较一对与节点对准网络的模块化结构的新方法。当前大多数方法(例如归一化信息)比较了从社区检测算法得出的两个节点分区,但忽略了各自的基本网络拓扑。在解决这一差距时,我们的方法部署了一个社区检测质量功能,以评估每个节点分区相对于另一个网络的连接结构的拟合。具体来说,对于两个网络A和B,我们通过评估B分区相对于A网络A(使用标准质量功能)的A分区的拟合来将B的节点分区投射到A的连接结构上。我们量化了网络A描述B的模块化结构。BERETEB.在其他方向上重复此方向,我们获得了二维距离测度,Biecectional(Biirectectal)距离(BIDIRIRIR)。我们方法的优势是三个方面。首先,它适用于寻求优化目标功能的广泛社区检测算法。其次,它考虑了网络结构,特别是社区内部和社区之间连接的强度,因此可以捕获具有相似分区的网络之间的差异,但是其中一个可能具有更定义或强大的社区结构。第三,它还可以识别出不同的最佳分区掩盖两个网络基础社区结构相对相似的情况。我们说明了各种社区检测算法的方法,包括多分辨率方法以及一系列模拟和现实世界网络。

Here we propose a new method to compare the modular structure of a pair of node-aligned networks. The majority of current methods, such as normalized mutual information, compare two node partitions derived from a community detection algorithm yet ignore the respective underlying network topologies. Addressing this gap, our method deploys a community detection quality function to assess the fit of each node partition with respect to the other network's connectivity structure. Specifically, for two networks A and B, we project the node partition of B onto the connectivity structure of A. By evaluating the fit of B's partition relative to A's own partition on network A (using a standard quality function), we quantify how well network A describes the modular structure of B. Repeating this in the other direction, we obtain a two-dimensional distance measure, the bi-directional (BiDir) distance. The advantages of our methodology are three-fold. First, it is adaptable to a wide class of community detection algorithms that seek to optimize an objective function. Second, it takes into account the network structure, specifically the strength of the connections within and between communities, and can thus capture differences between networks with similar partitions but where one of them might have a more defined or robust community structure. Third, it can also identify cases in which dissimilar optimal partitions hide the fact that the underlying community structure of both networks is relatively similar. We illustrate our method for a variety of community detection algorithms, including multi-resolution approaches, and a range of both simulated and real world networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源