论文标题

逐个部分集成的模块交点会减少多环Feynman积分

Module Intersection for the Integration-by-Parts Reduction of Multi-Loop Feynman Integrals

论文作者

Bendle, Dominik, Boehm, Janko, Decker, Wolfram, Georgoudis, Alessandro, Pfreundt, Franz-Josef, Rahn, Mirko, Zhang, Yang

论文摘要

在此手稿中,将出现在意大利帕德瓦的会议“数学2019”会议记录中,我们提供了模块交集方法的概述,以减少逐个组成的集成(IBP)减少多环feynman积分。基于计算代数几何形状的模块相交方法是一种高效的方法,可以在没有双重传播器或以最高传播器程度绑定的情况下获得IBP关系。通过这种方式,可以获得比传统的IBP系统短得多的IBP系统。我们将现代的基于培养皿的工作流程管理系统GPI空间与计算机代数系统相结合,通过插值和有效的并行化来解决修剪的IBP系统。我们特别展示了如何使用GPI空间的新插件功能来管理计算的全局状态并有效处理可变数据。此外,本综述介绍了基于模块交叉点的限制传播器学位的IBP的Mathematica接口。

In this manuscript, which is to appear in the proceedings of the conference "MathemAmplitude 2019" in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integrals. The module intersection method, based on computational algebraic geometry, is a highly efficient way of getting IBP relations without double propagator or with a bound on the highest propagator degree. In this manner, trimmed IBP systems which are much shorter than the traditional ones can be obtained. We apply the modern, Petri net based, workflow management system GPI-Space in combination with the computer algebra system Singular to solve the trimmed IBP system via interpolation and efficient parallelization. We show, in particular, how to use the new plugin feature of GPI-Space to manage a global state of the computation and to efficiently handle mutable data. Moreover, a Mathematica interface to generate IBPs with restricted propagator degree, which is based on module intersection, is presented in this review.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源