论文标题

边缘激子极化子与范德华材料中工程缺陷的相互作用bi2se3

Interaction of edge exciton polaritons with engineered defects in the van der Waals material Bi2Se3

论文作者

Lingstaedt, Robin, Talebi, Nahid, Hentschel, Mario, Mashhadi, Soudabeh, Gompf, Bruno, Burghard, Marko, Giessen, Harald, van Aken, Peter A.

论文摘要

双曲线材料具有独特的特性,可在纳米光子学中进行各种有趣的应用。拓扑绝缘体BI2SE3代表THZ和可见范围内的天然双曲光介质。在这里,使用阴极发光光谱和电子损失光谱学,我们证明了Bi2Se3除了是双曲线材料外,还支持室温激子极性元素。此外,我们探讨了BI2SE3中双曲线边缘激子极化子的行为。边缘极性子是由占地与BI2SE3纳米片的上和下边缘耦合产生的混合模式。 特别是,我们使用电子损失光谱法比较了沿原始和人为结构的纳米纤维片的沿边缘极化传播中出现的类似Fabry-Pérot的共振。发现通过缺陷结构实验观察到的边缘偏振子的散射与有限差分的时间域模拟非常吻合。此外,我们在实验中证明了与传播边缘极性子相同的开放和闭合纳米腔的局部极化子的耦合。我们的发现证明了双曲线偏振子繁殖以应对缺陷的非凡能力。这为诸如纳米矫正电路,纳米尺度上的掩盖以及纳米级上的纳米量子技术等应用提供了绝佳的基础。

Hyperbolic materials exhibit unique properties that enable a variety of intriguing applications in nanophotonics. The topological insulator Bi2Se3 represents a natural hyperbolic optical medium, both in the THz and visible range. Here, using cathodoluminescence spectroscopy and electron energy-loss spectroscopy, we demonstrate that Bi2Se3, in addition to being a hyperbolic material, supports room-temperature exciton polaritons. Moreover, we explore the behavior of hyperbolic edge exciton polaritons in Bi2Se3. Edge polaritons are hybrid modes that result from the coupling of the polaritons bound to the upper and lower edges of Bi2Se3 nanoplatelets. In particular, we use electron energy-loss spectroscopy to compare Fabry-Pérot-like resonances emerging in edge polariton propagation along pristine and artificially structured edges of the nanoplatelets. The experimentally observed scattering of edge polaritons by defect structures was found to be in good agreement with finite-difference time-domain simulations. Moreover, we experimentally proved coupling of localized polaritons in identical open and closed circular nanocavities to the propagating edge polaritons. Our findings are testimony to the extraordinary capability of the hyperbolic polariton propagation to cope with the presence of defects. This provides an excellent basis for applications such as nanooptical circuitry, cloaking at the nanometer scale, as well as nanoscopic quantum technology on the nanoscale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源