论文标题
多个时间尺度的降雨量预测,具有一个长的短期内存网络
Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network
论文作者
论文摘要
长期的短期记忆网络(LSTM)已应用于每日排放预测,并取得了显着的成功。但是,许多实际情况都需要在更精细的时间表上进行预测。例如,对短而极端的洪水峰进行准确的预测会带来挽救生命的差异,但是这样的峰可能会避免日常预测的粗略分辨率。但是,天真地培训LSTM对小时数据的培训需要很长的输入序列,从而使学习努力且计算昂贵。在这项研究中,我们提出了两个多时间尺度LSTM(MTS-LSTM)体系结构,它们在一个模型中共同预测多个时间尺度,因为它们以单个时间分辨率处理长期输入,并分支到每个单独的时间表中以获取更近期的输入步骤。我们在美国大陆的516个盆地上测试了这些模型,并针对美国国家水模型进行了基准测试。与每次时间尺度不同的LSTM的天真预测相比,多时间尺度体系结构在计算上更有效,而准确性没有损失。除了预测质量之外,多时间尺度的LSTM可以处理不同时间尺度的不同输入变量,这与气象刺激的提前时间取决于其时间分辨率的操作应用尤其相关。
Long Short-Term Memory Networks (LSTMs) have been applied to daily discharge prediction with remarkable success. Many practical scenarios, however, require predictions at more granular timescales. For instance, accurate prediction of short but extreme flood peaks can make a life-saving difference, yet such peaks may escape the coarse temporal resolution of daily predictions. Naively training an LSTM on hourly data, however, entails very long input sequences that make learning hard and computationally expensive. In this study, we propose two Multi-Timescale LSTM (MTS-LSTM) architectures that jointly predict multiple timescales within one model, as they process long-past inputs at a single temporal resolution and branch out into each individual timescale for more recent input steps. We test these models on 516 basins across the continental United States and benchmark against the US National Water Model. Compared to naive prediction with a distinct LSTM per timescale, the multi-timescale architectures are computationally more efficient with no loss in accuracy. Beyond prediction quality, the multi-timescale LSTM can process different input variables at different timescales, which is especially relevant to operational applications where the lead time of meteorological forcings depends on their temporal resolution.