论文标题

Riemannian流形的一类椭圆形和抛物线方程的梯度估计值

Gradient estimates for a class of elliptic and parabolic equations on Riemannian manifolds

论文作者

Wang, Jie

论文摘要

令$(n,g)$为完整的非政策riemannian歧管,从下方界定RICCI曲率。在本文中,我们研究了一类非线性椭圆方程$$Δu(x)+a(x)+a(x)u(x)\ log u(x)+b(x)+b(x)u(x)u(x)u(x)= 0 $ n $ on $ a(x)$ a(x)$ as $ c^{2} $ b(x $ c counter $ b(x)$ c^$ c^y是$ c^) $(δ-\ frac {\ partial} {\ partial t})到$ x \ in n $,而相对于时间$ t $的$ c^{1} $。与许多相似的结果相反,在这里我们不假定方程系数是恒定的,因此我们的结果可以视为对几个经典估计的扩展。

Let $(N, g)$ be a complete noncompact Riemannian manifold with Ricci curvature bounded from below. In this paper, we study the gradient estimates of positive solutions to a class of nonlinear elliptic equations $$Δu(x)+a(x)u(x)\log u(x)+b(x)u(x)=0$$ on $N$ where $a(x)$ is $C^{2}$-smooth while $b(x)$ is $C^{1}$ and its parabolic counterparts $$(Δ-\frac{\partial}{\partial t})u(x,t)+a(x,t)u(x,t)\log u(x,t) + b(x,t)u(x,t)=0$$ on $N\times[0, \infty)$ where $a(x,t)$ and $b(x,t)$ are $C^{2} $ with respect to $x\in N$ while are $C^{1}$ with respect to the time $t$. In contrast with lots of similar results, here we do not assume the coefficients of equations are constant, so our results can be viewed as extensions to several classical estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源