论文标题
关于乘二芬太丁近似的度量理论
On the metric theory of multiplicative Diophantine approximation
论文作者
论文摘要
1962年,加拉格尔(Gallagher)证明了Khintchine定理关于二磷酸近似的较高维度。 Gallagher的定理指出,对于任何非增加近似函数$ψ:\ mathbb {n} \ to(0,1/2)$带有$ \ sum_ {q = 1}^{\ infty}^{\ infty}ψ(q) \ [ \ {(x,y)\ in [0,1]^2:\ | qx-γ\ | \ | | qy-γ'\ | <ψ(q) \] 具有完整的Lebesgue度量。最近,Chow和Technau证明了上述结果的完全不均匀版本(对$γ,γ'$无限制)。 在本文中,我们证明了纤维乘二磷酸近似的ERDőS-VAALER型结果。在此过程中,通过一种不同的方法,我们证明了Chow-Technau的定理的版本稍弱,条件是至少有$γ,γ'$不是Liouville。我们还扩展了Chow-technau的结果,以实现纤维不均匀的Gallagher的Liouville纤维定理。
In 1962, Gallagher proved an higher dimensional version of Khintchine's theorem on Diophantine approximation. Gallagher's theorem states that for any non-increasing approximation function $ψ:\mathbb{N}\to (0,1/2)$ with $\sum_{q=1}^{\infty} ψ(q)\log q=\infty$ and $γ=γ'=0$ the following set \[ \{(x,y)\in [0,1]^2: \|qx-γ\|\|qy-γ'\|<ψ(q) \text{ infinitely often}\} \] has full Lebesgue measure. Recently, Chow and Technau proved a fully inhomogeneous version (without restrictions on $γ,γ'$) of the above result. In this paper, we prove an Erdős-Vaaler type result for fibred multiplicative Diophantine approximation. Along the way, via a different method, we prove a slightly weaker version of Chow-Technau's theorem with the condition that at least one of $γ,γ'$ is not Liouville. We also extend Chow-Technau's result for fibred inhomogeneous Gallagher's theorem for Liouville fibres.