论文标题
通过可解释的注意力重新识别的自我监督几何特征发现发现
Self-supervised Geometric Features Discovery via Interpretable Attention for Vehicle Re-Identification and Beyond
论文作者
论文摘要
为了学习可区分的模式,大多数最近在车辆重新识别(REID)的作品都努力重新开发官方基准,以提供各种监督,这需要过度的人类劳动。在本文中,我们试图实现类似的目标,但不涉及更多人类的努力。为此,我们介绍了一个新颖的框架,该框架成功地编码了几何局部特征和全球表示形式,以区分车辆实例,仅通过官方ID标签的监督而优化了车辆实例。具体而言,鉴于我们的见解是REID中具有相似的几何特征,我们建议借用自我监管的表示学习,以促进几何特征发现。为了浓缩这些功能,我们引入了一个可解释的注意模块,并具有局部最大值聚集的核心,而不是全自动学习,其机制是完全可以理解的,其响应图在物理上是合理的。据我们所知,我们是第一个进行自我监督学习以发现几何特征的人。我们在三个最受欢迎的车辆REID数据集上进行了全面的实验,即Veri-776,CityFlow-Reid和warterid。我们报告了最新的(SOTA)性能和有希望的可视化结果。我们还在其他相关任务(即REID和多目标多摄像机(MTMC)车辆跟踪方面,我们的方法都具有出色的可扩展性。
To learn distinguishable patterns, most of recent works in vehicle re-identification (ReID) struggled to redevelop official benchmarks to provide various supervisions, which requires prohibitive human labors. In this paper, we seek to achieve the similar goal but do not involve more human efforts. To this end, we introduce a novel framework, which successfully encodes both geometric local features and global representations to distinguish vehicle instances, optimized only by the supervision from official ID labels. Specifically, given our insight that objects in ReID share similar geometric characteristics, we propose to borrow self-supervised representation learning to facilitate geometric features discovery. To condense these features, we introduce an interpretable attention module, with the core of local maxima aggregation instead of fully automatic learning, whose mechanism is completely understandable and whose response map is physically reasonable. To the best of our knowledge, we are the first that perform self-supervised learning to discover geometric features. We conduct comprehensive experiments on three most popular datasets for vehicle ReID, i.e., VeRi-776, CityFlow-ReID, and VehicleID. We report our state-of-the-art (SOTA) performances and promising visualization results. We also show the excellent scalability of our approach on other ReID related tasks, i.e., person ReID and multi-target multi-camera (MTMC) vehicle tracking.