论文标题
各向同性的架子和搜索
Isotropy Groups of Free Racks and Quandles
论文作者
论文摘要
在本文中,我们表征了自由,有限生成的架子和搜索的(协变)各向同性组。结果,我们表明,这种架子和难题的通常内部自动形态恰恰是那些“相干扩展”的自动形态。然后,我们使用此结果来计算架子和难题类别的全局各向同性组,即这些类别的身份函数的自动形态组。
In this article, we characterize the (covariant) isotropy groups of free, finitely generated racks and quandles. As a consequence, we show that the usual inner automorphisms of such racks and quandles are precisely those automorphisms that are "coherently extendible". We then use this result to compute the global isotropy groups of the categories of racks and quandles, i.e. the automorphism groups of the identity functors of these categories.