论文标题

动作条件复发的卡尔曼网络,用于前进和反向动态学习

Action-Conditional Recurrent Kalman Networks For Forward and Inverse Dynamics Learning

论文作者

Shaj, Vaisakh, Becker, Philipp, Buchler, Dieter, Pandya, Harit, van Duijkeren, Niels, Taylor, C. James, Hanheide, Marc, Neumann, Gerhard

论文摘要

估计准确的前进和反动力学模型是基于模型的机器人的基于模型控制的重要组成部分,例如由液压,人造肌肉或处理不同接触情况的机器人驱动的机器人。由于复杂的磁滞效应,未建模的摩擦和陈述现象以及接触情况下的未知效应,因此对此类过程的分析模型通常不可用或不准确。一种有希望的方法是使用复发性神经网络以数据驱动的方式获得时空模型,因为它们可以克服这些问题。但是,这样的模型通常无法充分满足准确性需求,对于所需的高采样频率而言,性能退化,无法提供不确定性估计。我们采用最近的概率复发性神经网络体系结构,称为重新流动的卡尔曼网络(RKNS),通过在控制动作上调节其过渡动态来建模学习。在许多州估计任务上,RKN的表现优于标准复发网络,例如LSTMS。受Kalman过滤器的启发,RKN通过利用当前潜在状态和动作变量之间的加性相互作用,提供了一种优雅的方法来实现其复发单元内的动作调节。我们介绍两个体系结构,一种用于前向模型学习,另一种用于逆模型学习。两种体系结构在各种真实的机器人动力学模型上的预测性能方面都显着优于存在模型学习框架以及分析模型。

Estimating accurate forward and inverse dynamics models is a crucial component of model-based control for sophisticated robots such as robots driven by hydraulics, artificial muscles, or robots dealing with different contact situations. Analytic models to such processes are often unavailable or inaccurate due to complex hysteresis effects, unmodelled friction and stiction phenomena,and unknown effects during contact situations. A promising approach is to obtain spatio-temporal models in a data-driven way using recurrent neural networks, as they can overcome those issues. However, such models often do not meet accuracy demands sufficiently, degenerate in performance for the required high sampling frequencies and cannot provide uncertainty estimates. We adopt a recent probabilistic recurrent neural network architecture, called Re-current Kalman Networks (RKNs), to model learning by conditioning its transition dynamics on the control actions. RKNs outperform standard recurrent networks such as LSTMs on many state estimation tasks. Inspired by Kalman filters, the RKN provides an elegant way to achieve action conditioning within its recurrent cell by leveraging additive interactions between the current latent state and the action variables. We present two architectures, one for forward model learning and one for inverse model learning. Both architectures significantly outperform exist-ing model learning frameworks as well as analytical models in terms of prediction performance on a variety of real robot dynamics models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源