论文标题

MLCASK:协作数据分析管道中组件演变的有效管理

MLCask: Efficient Management of Component Evolution in Collaborative Data Analytics Pipelines

论文作者

Luo, Zhaojing, Yeung, Sai Ho, Zhang, Meihui, Zheng, Kaiping, Zhu, Lei, Chen, Gang, Fan, Feiyi, Lin, Qian, Ngiam, Kee Yuan, Ooi, Beng Chin

论文摘要

随着用于数据分析的机器学习的不断增加,随着数据集和受过训练的模型随着时间的流逝而发展,维护机器学习管道变得越来越复杂。在协作环境中,由于管道发展而引起的更改通常会导致繁琐的协调和维护工作,从而提高了成本并难以使用。不幸的是,现有的解决方案无法解决版本的演变问题,尤其是在协作环境中,对于隔离不同用户角色进行的非线性版本控制语义是必要的。缺乏版本控制语义的语义还会引起不必要的存储消耗,并降低了由于数据重复和重复的数据预处理而引起的效率,这是可以避免的。在本文中,我们确定了在机器学习管道部署期间出现的两个主要挑战,并通过设计端到端分析系统MLCASK的版本控制来解决它们。该系统支持多个用户角色,能够在机器学习管道的背景下执行类似GIT的分支和合并操作。我们通过使用可重复使用的历史记录和管道兼容性信息来修剪管道搜索树来定义和加速公制驱动的合并操作。此外,我们设计并实施了优先的管道搜索,该搜索优先考虑可能会产生更好性能的管道。 MLCASK的有效性通过对几个现实部署案例进行的广泛研究进行了评估。绩效评估表明,所提出的合并操作的速度最高为7.8倍,并且比不使用历史记录的基线方法节省了11.9倍的存储空间。

With the ever-increasing adoption of machine learning for data analytics, maintaining a machine learning pipeline is becoming more complex as both the datasets and trained models evolve with time. In a collaborative environment, the changes and updates due to pipeline evolution often cause cumbersome coordination and maintenance work, raising the costs and making it hard to use. Existing solutions, unfortunately, do not address the version evolution problem, especially in a collaborative environment where non-linear version control semantics are necessary to isolate operations made by different user roles. The lack of version control semantics also incurs unnecessary storage consumption and lowers efficiency due to data duplication and repeated data pre-processing, which are avoidable. In this paper, we identify two main challenges that arise during the deployment of machine learning pipelines, and address them with the design of versioning for an end-to-end analytics system MLCask. The system supports multiple user roles with the ability to perform Git-like branching and merging operations in the context of the machine learning pipelines. We define and accelerate the metric-driven merge operation by pruning the pipeline search tree using reusable history records and pipeline compatibility information. Further, we design and implement the prioritized pipeline search, which gives preference to the pipelines that probably yield better performance. The effectiveness of MLCask is evaluated through an extensive study over several real-world deployment cases. The performance evaluation shows that the proposed merge operation is up to 7.8x faster and saves up to 11.9x storage space than the baseline method that does not utilize history records.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源