论文标题
按需乘车服务用户的时空流动性模式
Spatio-Temporal Mobility Patterns of On-demand Ride-hailing Service Users
论文作者
论文摘要
了解个人流动性行为对于建模城市运输至关重要。它为人类运动的生成机制提供了更深入的见解。以前已经使用了新兴的数据源,例如手机电话详细信息记录,社交媒体帖子,GPS观察和智能卡交易,以揭示个人出行行为。在本文中,我们使用从乘车服务平台收集的大规模数据报告了时空流动性行为。根据乘客级别的旅行信息,我们开发了一种算法,以识别用户访问的地方和这些地方的类别。为了表征时间运动模式,我们揭示了通勤和非交易行程之间的跳闸产生特征的差异以及连续旅行之间间隙时间的分布。为了了解空间流动性模式,我们观察到访问地点数量及其等级的分布,住宅和工作场所的空间分布以及旅行距离和旅行时间的分布。与基于其他数据源的现有移动性研究结果相比,我们的分析强调了乘车服务用户的移动性模式的差异。它显示了开发高分辨率的个人流动模型的潜力,这些模型可以以高保真度和准确性来预测新兴的移动性服务的需求。
Understanding individual mobility behavior is critical for modeling urban transportation. It provides deeper insights on the generative mechanisms of human movements. Emerging data sources such as mobile phone call detail records, social media posts, GPS observations, and smart card transactions have been used before to reveal individual mobility behavior. In this paper, we report the spatio-temporal mobility behaviors using large-scale data collected from a ride-hailing service platform. Based on passenger-level travel information, we develop an algorithm to identify users' visited places and the category of those places. To characterize temporal movement patterns, we reveal the differences in trip generation characteristics between commuting and non-commuting trips and the distribution of gap time between consecutive trips. To understand spatial mobility patterns, we observe the distribution of the number of visited places and their rank, the spatial distribution of residences and workplaces, and the distributions of travel distance and travel time. Our analysis highlights the differences in mobility patterns of the users of ride-hailing services, compared to the findings of existing mobility studies based on other data sources. It shows the potential of developing high-resolution individual-level mobility models that can predict the demand of emerging mobility services with high fidelity and accuracy.