论文标题
多项式序列中多项式的非现实零,满足三项复发关系
Non-real zeros of polynomials in a polynomial sequence satisfying a three-term recurrence relation
论文作者
论文摘要
本文讨论了多项式序列中多项式零的位置$ \ {p_n(z)\} $,该$由$ p_n(z) + b(z) + b(z)p_ {z)p_ {n-1}(z) + a(z) + a(z) + a(z)p_(z)p_(z)p_ {n-k} {n-k}(z)= 0 $ and y和标准的三个期重复关系生成$ p_ {0}(z)= 1,p _ { - 1}(z)= \ ldots = p _ { - k+1}(z)= 0,其中$ a(z)$和$ b(z)$是任意的codrime coprime recontrime真实的多项式。我们表明,与非现实零的$ \ {p_n(z)\} $中始终存在多项式。
This paper discusses the location of zeros of polynomials in a polynomial sequence $\{P_n(z)\}$ generated by a three-term recurrence relation of the form $P_n(z)+ B(z)P_{n-1}(z) +A(z) P_{n-k}(z)=0$ with $k>2$ and the standard initial conditions $P_{0}(z)=1, P_{-1}(z)=\ldots=P_{-k+1}(z)=0,$ where $A(z)$ and $B(z)$ are arbitrary coprime real polynomials. We show that there always exist polynomials in $\{P_n(z)\}$ with non-real zeros.