论文标题
梯度流量有限元元素离散率具有基于能量的适应性,用于Schrödingers方程的激发态
Gradient flow finite element discretisations with energy-based adaptivity for excited states of Schrödingers equation
论文作者
论文摘要
我们提出了一个有效的数值程序,该过程基于[Heid等,Arxiv:1906.06954]的计算方案,用于Schrödingers方程激发态的数值近似。特别是,该过程采用梯度流动和局部网格改进的自适应相互作用,从而在算法的每个步骤中都可以保证能量衰减。计算测试强调,该策略能够提供高度准确的结果,并且相对于自由度的数量,最佳收敛速率。
We present an effective numerical procedure, which is based on the computational scheme from [Heid et al., arXiv:1906.06954], for the numerical approximation of excited states of Schrödingers equation. In particular, this procedure employs an adaptive interplay of gradient flow iterations and local mesh refinements, leading to a guaranteed energy decay in each step of the algorithm. The computational tests highlight that this strategy is able to provide highly accurate results, with optimal convergence rate with respect to the number of degrees of freedom.