论文标题
使用卷积神经网络和随机森林对锂离子电池的健康状态估算
Robust State of Health Estimation of Lithium-ion Batteries Using Convolutional Neural Network and Random Forest
论文作者
论文摘要
锂离子电池的健康状况(SOH)与其安全性和效率直接相关,但是对现实世界应用(例如电动汽车)的有效评估仍然具有挑战性。在本文中,研究了对部分放电的SOH(即容量褪色)的估计,并研究了不同的起始和最终充电状态(SOC)水平。挑战在于,部分排放会截断可用于SOH估计的数据,从而导致常见SOH指标的丢失或扭曲。为了应对与部分放电相关的这一挑战,我们探索了卷积神经网络(CNN),以提取两个连续的电荷/放电周期之间SOH($δ$ SOH)的SOH和变化的指标。然后采用随机森林算法来通过利用CNN的指标来产生最终的SOH估计。使用局部放电数据进行绩效评估,该数据具有不同的SOC范围,这些数据集创建的不同SOC范围。将提出的方法与i)基于差分分析的方法和ii)分别仅使用SOH和$δ$ SOH指标的两种基于CNN的方法进行了比较。通过比较,提出的方法表明了提高的估计精度和鲁棒性。对CNN和随机森林模型的敏感性分析进一步验证了所提出的方法可以更好地利用可用的部分放电数据进行SOH估计。
The State of Health (SOH) of lithium-ion batteries is directly related to their safety and efficiency, yet effective assessment of SOH remains challenging for real-world applications (e.g., electric vehicle). In this paper, the estimation of SOH (i.e., capacity fading) under partial discharge with different starting and final State of Charge (SOC) levels is investigated. The challenge lies in the fact that partial discharge truncates the data available for SOH estimation, thereby leading to the loss or distortion of common SOH indicators. To address this challenge associated with partial discharge, we explore the convolutional neural network (CNN) to extract indicators for both SOH and changes in SOH ($Δ$SOH) between two successive charge/discharge cycles. The random forest algorithm is then adopted to produce the final SOH estimate by exploiting the indicators from the CNNs. Performance evaluation is conducted using the partial discharge data with different SOC ranges created from a fast-discharging dataset. The proposed approach is compared with i) a differential analysis-based approach and ii) two CNN-based approaches using only SOH and $Δ$SOH indicators, respectively. Through comparison, the proposed approach demonstrates improved estimation accuracy and robustness. Sensitivity analysis of the CNN and random forest models further validates that the proposed approach makes better use of the available partial discharge data for SOH estimation.