论文标题
Lieb-Liniger模型中动态相关性的低密度极限
Low-density limit of dynamical correlations in the Lieb-Liniger model
论文作者
论文摘要
我们在Lieb-Liniger模型中的场和密度运算符的动态相关性中得出了明确的表达式,其中具有小粒子密度$ {\ cal d} $的任意特征态内。它们在所有时空和任何交互强度$ c> 0 $中都是有效的,并且是$ {\ cal d} $扩展的领先顺序。通过将相关函数编写为正式分解为部分分数时,将相关函数写成对形式的总和来获得这种扩展。
We derive explicit expressions for dynamical correlations of the field and density operators in the Lieb-Liniger model, within an arbitrary eigenstate with a small particle density ${\cal D}$. They are valid for all space and time and any interaction strength $c>0$, and are the leading order of an expansion in ${\cal D}$. This expansion is obtained by writing the correlation functions as sums over form factors when formally decomposed into partial fractions.