论文标题

F-Siamese跟踪器:用于3D单一对象跟踪的基于Froustum的双暹罗网络

F-Siamese Tracker: A Frustum-based Double Siamese Network for 3D Single Object Tracking

论文作者

Zou, Hao, Cui, Jinhao, Kong, Xin, Zhang, Chujuan, Liu, Yong, Wen, Feng, Li, Wanlong

论文摘要

本文介绍了F-SiaMese Tracker,这是一种新颖的单个对象跟踪方法,其特征在于更强大地集成2D和3D信息以减少冗余搜索空间。 3D单一对象跟踪的主要挑战是如何减少生成适当的3D候选者的搜索空间。首先,我们的方法不仅依靠3D提案,而是利用了应用于RGB图像的暹罗网络生成2D区域建议,然后将其挤出到3D观看frustums中。此外,我们在3D Frustum上执行在线准确性验证,以生成精炼的点云搜索空间,可以将其直接嵌入现有的3D跟踪主链中。为了提高效率,通过减少搜索空间,我们的方法可以通过更少的候选人获得更好的性能。此外,从引入在线准确性验证的情况下,对于偶尔的闭塞或非常稀疏的点的情况,即使2D Siamese Tracker失去了目标,我们的方法仍然可以达到很高的精度。这种方法使我们能够在稀疏的户外数据集(Kitti Tracking)上通过显着的边距设置3D单一对象跟踪的新最新。此外,对2D单一对象跟踪的实验表明,我们的框架也提高了2D跟踪性能。

This paper presents F-Siamese Tracker, a novel approach for single object tracking prominently characterized by more robustly integrating 2D and 3D information to reduce redundant search space. A main challenge in 3D single object tracking is how to reduce search space for generating appropriate 3D candidates. Instead of solely relying on 3D proposals, firstly, our method leverages the Siamese network applied on RGB images to produce 2D region proposals which are then extruded into 3D viewing frustums. Besides, we perform an online accuracy validation on the 3D frustum to generate refined point cloud searching space, which can be embedded directly into the existing 3D tracking backbone. For efficiency, our approach gains better performance with fewer candidates by reducing search space. In addition, benefited from introducing the online accuracy validation, for occasional cases with strong occlusions or very sparse points, our approach can still achieve high precision, even when the 2D Siamese tracker loses the target. This approach allows us to set a new state-of-the-art in 3D single object tracking by a significant margin on a sparse outdoor dataset (KITTI tracking). Moreover, experiments on 2D single object tracking show that our framework boosts 2D tracking performance as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源