论文标题

模拟归因社交网络中的系统偏见及其对少数族裔节点排名的影响

Simulating systematic bias in attributed social networks and its effect on rankings of minority nodes

论文作者

Stamm, Felix I., Neuhäuser, Leonie, Lemmerich, Florian, Schaub, Michael T., Strohmaier, Markus

论文摘要

网络分析提供了了解各种社交系统的强大工具。但是,大多数分析隐含地假设所考虑的关系数据是无错误,可靠且准确反映要分析的系统。特别是如果网络由多个组组成,则此假设与一系列系统的偏见,测量错误和其他在文献中有充分记录的不准确性冲突。为了研究此类错误的效果,我们引入了一个框架,以模拟归因网络中的系统偏见。我们的框架使我们能够建模由外部节点属性或(隐藏)网络结构本身引起的错误驱动的错误边缘观测值。我们体现了系统的不准确性如何扭曲结论,从基于学位的排名中的少数族裔表示网络分析任务中得出结论。通过分析具有不同同质级别和群体大小的合成网络和真实网络,我们发现引入系统的边缘误差可能会导致少数群体的排名强劲或下降。观察到的效果既取决于所考虑的边缘误差的类型和系统中同质的水平。因此,我们得出的结论是,系统偏见在边缘数据中的含义取决于网络拓扑与系统误差类型之间的相互作用。这强调了此处开发的错误模型框架的需求,该框架为研究系统边缘不确定性对各种网络分析任务的影响提供了第一步。

Network analysis provides powerful tools to learn about a variety of social systems. However, most analyses implicitly assume that the considered relational data is error-free, reliable and accurately reflects the system to be analysed. Especially if the network consists of multiple groups, this assumption conflicts with a range of systematic biases, measurement errors and other inaccuracies that are well documented in the literature. To investigate the effects of such errors we introduce a framework for simulating systematic bias in attributed networks. Our framework enables us to model erroneous edge observations that are driven by external node attributes or errors arising from the (hidden) network structure itself. We exemplify how systematic inaccuracies distort conclusions drawn from network analyses on the network analysis task of minority representations in degree-based rankings. By analysing synthetic and real networks with varying homophily levels and group sizes, we find that introducing systematic edge errors can result both in a strongly increased or decreased ranking of the minority. The observed effect depends both on the type of edge error considered and level of homophily in the system. We thus conclude that the implications of systematic bias in edge data depend on an interplay between network topology and type of systematic error. This emphasises the need for an error model framework as developed here, which provides a first step towards studying the effects of systematic edge-uncertainty for various network analysis tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源