论文标题

通过语义标记的组成概括

Compositional Generalization via Semantic Tagging

论文作者

Zheng, Hao, Lapata, Mirella

论文摘要

尽管神经序列到序列模型已成功地应用于语义解析,但它们在组成概括方面失败了,即,它们无法系统地概括为看不见的组成部分。由传统语义解析的促进,在符号语法中明确考虑了构图,我们提出了一个新的解码框架,以保留序列到序列模型的表达性和一般性,同时以词典式的对齐方式和散布的信息处理。具体而言,我们将解码分解为两个阶段,其中输入话语首先用代表单个单词的含义的语义符号标记,然后使用序列到序列模型来预测对话语和预测的标签序列的最终含义表示条件。三个语义解析数据集的实验结果表明,所提出的方法始终改善跨模型架构,域,域和语义形式主义的组成概括。

Although neural sequence-to-sequence models have been successfully applied to semantic parsing, they fail at compositional generalization, i.e., they are unable to systematically generalize to unseen compositions of seen components. Motivated by traditional semantic parsing where compositionality is explicitly accounted for by symbolic grammars, we propose a new decoding framework that preserves the expressivity and generality of sequence-to-sequence models while featuring lexicon-style alignments and disentangled information processing. Specifically, we decompose decoding into two phases where an input utterance is first tagged with semantic symbols representing the meaning of individual words, and then a sequence-to-sequence model is used to predict the final meaning representation conditioning on the utterance and the predicted tag sequence. Experimental results on three semantic parsing datasets show that the proposed approach consistently improves compositional generalization across model architectures, domains, and semantic formalisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源