论文标题
DNA组装的等离子链中的长和短距性手性相互作用
Long- and Short-Ranged Chiral Interactions in DNA Assembled Plasmonic Chains
论文作者
论文摘要
分子手性在无数的生物学过程中起着至关重要的作用。分子的手性通常可以通过其特征光学反应圆形二色性(CD)来识别。因此,CD信号长期以来一直用于识别分子状态或遵循动态蛋白质构型。近年来,重点已转向等离子纳米结构,因为它们显示出从病原体传感到新型光学材料的应用的潜力。这种手性金属结构的各个元素的等离子体耦合是获得较大CD信号的关键先决条件。我们在这里确定并实施了各种耦合实体 - 手性和精神分裂 - 在接近100 nm的距离上获得手性转移。该耦合是由位于一对金色纳米棒之间的Achiral纳米球实现的,这些金纳米棒与手性的方式相距遥远。我们使用DNA折纸以纳米精度合成了这些结构,并获得了样品均匀性,使我们能够直接证明远处纳米棒之间有效的手性能量转移。发射机粒子在CD响应的振幅中引起强烈的增强,纳米球的谐振频率处的其他手性特征的出现以及纳米棒的纵向等离子共振频率的红移。数值模拟与我们的实验观察结果紧密匹配,并就手性光场的复杂行为和在复杂体系结构中等离子体的转移提供了见解。
Molecular chirality plays a crucial role in innumerable biological processes. The chirality of a molecule can typically be identified by its characteristic optical response, the circular dichroism (CD). CD signals have thus long been used to identify the state of molecules or to follow dynamic protein configurations. In recent years, the focus has moved towards plasmonic nanostructures, as they show potential for applications ranging from pathogen sensing to novel optical materials. The plasmonic coupling of the individual elements of such chiral metallic structures is a crucial prerequisite to obtain sizeable CD signals. We here identified and implemented various coupling entities - chiral and achiral - to obtain chiral transfer over distances close to 100 nm. The coupling is realized by an achiral nanosphere situated between a pair of gold nanorods that are arranged far apart but in a chiral fashion. We synthesized these structures with nanometer precision using DNA origami and obtained sample homogeneity that allowed us to directly demonstrate efficient chiral energy transfer between the distant nanorods. The transmitter particle causes a strong enhancement in amplitude of the CD response, the emergence of an additional chiral feature at the resonance frequency of the nanosphere, and a redshift of the longitudinal plasmonic resonance frequency of the nanorods. Numerical simulations closely match our experimental observations and give insights in the intricate behavior of chiral optical fields and the transfer of plasmons in complex architectures.