论文标题

在不断发展的简单复合物中的同源渗透过渡

Homological percolation transitions in growing simplicial complexes

论文作者

Lee, Yongsun, Lee, Jongshin, Oh, Soo Min, Lee, Deokjae, Kahng, B.

论文摘要

简单复合物(SC)表示是一个优雅的数学框架,用于表示复合物或具有高阶相互作用的群体在各种复杂系统中的效果,从大脑网络到社会关系。在这里,我们使用经验数据集和提出的模型探讨了生长SC的同源渗透过渡(HPT)。 HPT由第一和第二Betti数确定,这表明分别是一维宏观尺度的同源周期和空腔的出现。提出了一个最小的SC模型,即具有两个基本因素,即增长和优先依恋,以模拟社会合作关系。该模型成功地重现了HPTS,并确定了具有不同关键指数的无限顺序(Berezinskii-Kosterlitz- berezinskii-kosterlitz- the theless typers)。与在静态随机SC中观察到的Kahle定位相反,即使出现第二个Betti数字,第一个Betti数也继续增加。发现这种离域源于上述两个因素,并且当二维单纯形的合并速率小于孤立的单纯糖的出生率时。我们的结果可以为复杂网络(例如社会和生物网络)的成熟步骤提供拓扑见解。

Simplicial complex (SC) representation is an elegant mathematical framework for representing the effect of complexes or groups with higher-order interactions in a variety of complex systems ranging from brain networks to social relationships. Here, we explore the homological percolation transitions (HPTs) of growing SCs using empirical datasets and a model proposed. The HPTs are determined by the first and second Betti numbers, which indicate the appearance of one- and two-dimensional macroscopic-scale homological cycles and cavities, respectively. A minimal SC model with two essential factors, namely, growth and preferential attachment, is proposed to model social coauthorship relationships. This model successfully reproduces the HPTs and determines the transition types as infinite order (the Berezinskii--Kosterlitz--Thouless type) with different critical exponents. In contrast to the Kahle localization observed in static random SCs, the first Betti number continues to increase even after the second Betti number appears. This delocalization is found to stem from the two aforementioned factors and arises when the merging rate of two-dimensional simplexes is less than the birth rate of isolated simplexes. Our results can provide topological insight into the maturing steps of complex networks such as social and biological networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源