论文标题

Wasserstein Impact Mesase(WIM):一种通常适用的实用工具,用于量化贝叶斯统计的先前影响

The Wasserstein Impact Measure (WIM): a generally applicable, practical tool for quantifying prior impact in Bayesian statistics

论文作者

Ghaderinezhad, Fatemeh, Ley, Christophe, Serrien, Ben

论文摘要

先前的分布是贝叶斯分析中的一个至关重要的基础,其选择将影响随后的推断。因此,重要的是要有一种方便的方法来量化这种影响,因为这种先前影响的衡量标准将有助于我们在给定情况下在两个或多个先验之间进行选择。最近提出的方法是确定由两个不同先验的后代之间的瓦斯汀距离,揭示了它们的距离有多近或距离。特别是,如果一个先验是统一/平坦的先验,则此距离会导致对另一个先验的先验影响的真实度量。尽管从理论上的角度来看,该提议具有很高的吸引力和成功的限制:它要求先前的分布要嵌套,但后验分布不应具有过于复杂的形式,在大多数考虑的设置中,确切的距离未计算,但提出了急剧的上限和较低的界限,到目前为止,该提案限制为限制到标有参数的标准参数。在本文中,我们通过引入这种理论方法的实用版本,即Wasserstein Impact Mesase(WIM)来克服所有这些局限性。在三个模拟场景中,我们将将WIM与理论瓦斯汀方法以及文献的两个竞争者先前的影响措施进行比较。我们最终通过将其应用于两个数据集来说明WIM的多功能性。

The prior distribution is a crucial building block in Bayesian analysis, and its choice will impact the subsequent inference. It is therefore important to have a convenient way to quantify this impact, as such a measure of prior impact will help us to choose between two or more priors in a given situation. A recently proposed approach consists in determining the Wasserstein distance between posteriors resulting from two distinct priors, revealing how close or distant they are. In particular, if one prior is the uniform/flat prior, this distance leads to a genuine measure of prior impact for the other prior. While highly appealing and successful from a theoretical viewpoint, this proposal suffers from practical limitations: it requires prior distributions to be nested, posterior distributions should not be of a too complex form, in most considered settings the exact distance was not computed but sharp upper and lower bounds were proposed, and the proposal so far is restricted to scalar parameter settings. In this paper, we overcome all these limitations by introducing a practical version of this theoretical approach, namely the Wasserstein Impact Measure (WIM). In three simulated scenarios, we will compare the WIM to the theoretical Wasserstein approach, as well as to two competitor prior impact measures from the literature. We finally illustrate the versatility of the WIM by applying it on two datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源