论文标题

关于辍学训练的收敛和概括

On Convergence and Generalization of Dropout Training

论文作者

Mianjy, Poorya, Arora, Raman

论文摘要

我们研究具有整流线性单元(RELU)激活的两层神经网络中的辍学。在轻度的过度参数化并假设限制内核可以以正差分开数据分布,我们表明具有逻辑损失的辍学训练可实现$ O(1/ε)$迭代中的测试错误中的$ε$ -Suboptimality。

We study dropout in two-layer neural networks with rectified linear unit (ReLU) activations. Under mild overparametrization and assuming that the limiting kernel can separate the data distribution with a positive margin, we show that dropout training with logistic loss achieves $ε$-suboptimality in test error in $O(1/ε)$ iterations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源