论文标题
评估在具有实地地理边界条件的气候模型中模拟云超级参数的深度学习的潜力
Assessing the Potential of Deep Learning for Emulating Cloud Superparameterization in Climate Models with Real-Geography Boundary Conditions
论文作者
论文摘要
我们使用离线拟合超级参数化社区大气模型的数据来探讨馈送前馈深神经网络(DNN)对现实地理学中云超级参数的模拟潜力。为了确定最高技能的网络体系结构,我们使用〜250个试验正式优化了超参数。我们的DNN解释了整个中速对流层的15分钟采样量表的时间差异的70%以上。与DNN技能相比,自相关时间尺度分析表明,在热带,海洋边界层中的拟合度较低,这是由神经网络难度驱动的,因此在对流中效仿快速,随机信号。但是,时间域中的光谱分析表明昼夜量表上信号的熟练效仿。仔细观察昼夜周期,揭示了对加热和湿润场中的土地对比和垂直结构的正确仿真,但沉淀的一定畸变。靶向降水技能的灵敏度测试揭示了增加正约束与高参数调整的互补作用,从而激发了两者在将来的使用。首次尝试使用DNN模拟大气场的离线土地模型产生令人放心的结果,进一步支持了现实地理环境中神经网络仿真的生存能力。总体而言,合适的技能具有竞争力,与经过培训的附加信息(包括过去状态的记忆)进行了精致的残留和卷积神经网络体系结构的最新尝试。我们的结果通过机器学习证实了与大洲超级参数化对流的参数化性,我们重点介绍了在空间和时间上在当地施放此问题的优势,以准确仿真,并希望快速实施混合气候模型。
We explore the potential of feed-forward deep neural networks (DNNs) for emulating cloud superparameterization in realistic geography, using offline fits to data from the Super Parameterized Community Atmospheric Model. To identify the network architecture of greatest skill, we formally optimize hyperparameters using ~250 trials. Our DNN explains over 70 percent of the temporal variance at the 15-minute sampling scale throughout the mid-to-upper troposphere. Autocorrelation timescale analysis compared against DNN skill suggests the less good fit in the tropical, marine boundary layer is driven by neural network difficulty emulating fast, stochastic signals in convection. However, spectral analysis in the temporal domain indicates skillful emulation of signals on diurnal to synoptic scales. A close look at the diurnal cycle reveals correct emulation of land-sea contrasts and vertical structure in the heating and moistening fields, but some distortion of precipitation. Sensitivity tests targeting precipitation skill reveal complementary effects of adding positive constraints vs. hyperparameter tuning, motivating the use of both in the future. A first attempt to force an offline land model with DNN emulated atmospheric fields produces reassuring results further supporting neural network emulation viability in real-geography settings. Overall, the fit skill is competitive with recent attempts by sophisticated Residual and Convolutional Neural Network architectures trained on added information, including memory of past states. Our results confirm the parameterizability of superparameterized convection with continents through machine learning and we highlight advantages of casting this problem locally in space and time for accurate emulation and hopefully quick implementation of hybrid climate models.