论文标题
隐藏的时空对称性和湍流间歇性
Hidden spatiotemporal symmetries and intermittency in turbulence
论文作者
论文摘要
我们考虑使用Galilean和时空尺度对称组的一般无限二维动力学系统。在引入与时间尺度和伽利略转换的等价关系时,我们定义了一个代表集,该集合包含每个等价类中的一个元素。时间尺度和加利利转化不会与进化算子(流动)通勤,因此等效关系并不不变。尽管如此,我们证明可以在代表性集合上引入具有不变概率度量的归一化流量,以便在统计意义上保留对称性。我们专注于隐藏的对称性,这些对称性在原始系统中被打破但在归一化系统中恢复。这种结构的核心动机和应用是湍流中的间歇性现象。我们表明,隐藏的对称性产生了结构函数的功率定律规模,并根据标准化度量为其指数得出了公式。在等效关系中使用伽利略转化导致了准拉格朗日描述,使开发的理论适用于Euler和Navier-Stokes Systems。
We consider general infinite-dimensional dynamical systems with the Galilean and spatiotemporal scaling symmetry groups. Introducing the equivalence relation with respect to temporal scalings and Galilean transformations, we define a representative set containing a single element within each equivalence class. Temporal scalings and Galilean transformations do not commute with the evolution operator (flow) and, hence, the equivalence relation is not invariant. Despite of that, we prove that a normalized flow with an invariant probability measure can be introduced on the representative set, such that symmetries are preserved in the statistical sense. We focus on hidden symmetries, which are broken in the original system but restored in the normalized system. The central motivation and application of this construction is the intermittency phenomenon in turbulence. We show that hidden symmetries yield power law scaling for structure functions, and derive formulas for their exponents in terms of normalized measures. The use of Galilean transformation in the equivalence relation leads to the Quasi--Lagrangian description, making the developed theory applicable to the Euler and Navier-Stokes systems.