论文标题

SU的复发分析(2)Chern-Simons分区功能在Brieskorn Spheres $σ(2,3,6n+5)$

Resurgent Analysis of SU(2) Chern-Simons Partition Function on Brieskorn Spheres $Σ(2,3,6n+5)$

论文作者

Wu, David H.

论文摘要

$ \ hat {z} $ - 可以重建SU(2)Chern-Simons分区的分析延续,通过Borel重新召开,被GPV发现,并已猜想是将3-元人的新同源物降低,可以将3d $ n $ 3d $ 3D;由GPPV。特别是,$ \ hat {z} $的复兴分析在发现WRT不变性的分析属性方面富有成果。对于$σ(2,3,5)的案例,对这些$ \ hat {z} $ - 不变的分析,GMP的$σ(2,3,5),\σ(2,3,7)$,Chun $σ(2,5,7)$由Chung和Kucharski,Indectionally,Chun和其他一些塞弗特词。在本文中,我们将$ \ hat {z} $的复兴分析扩展到一个Brieskorn同源性的家族$σ(2,3,6n+5)$中,其中$ n \ in \ Mathbb {z} _+$和$ 6n+5 $是PRIME。根据GPPV和Hikami,通过$σ(2,3,6n+5)$得出$ \ hat {z} $,我们提供了一个公式,可以在其中快速计算SU(2)Chern-Simons分区功能的完全分析延续的非扰动贡献。

$\hat{Z}$-invariants, which can reconstruct the analytic continuation of the SU(2) Chern-Simons partition functions via Borel resummation, were discovered by GPV and have been conjectured to be a new homological invariant of 3-manifolds which can shed light onto the superconformal and topologically twisted index of 3d $\mathcal{N}=2$ theories proposed by GPPV. In particular, the resurgent analysis of $\hat{Z}$ has been fruitful in discovering analytic properties of the WRT invariants. The resurgent analysis of these $\hat{Z}$-invariants has been performed for the cases of $Σ(2,3,5),\ Σ(2,3,7)$ by GMP, $Σ(2,5,7)$ by Chun, and, more recently, some additional Seifert manifolds by Chung and Kucharski, independently. In this paper, we extend and generalize the resurgent analysis of $\hat{Z}$ on a family of Brieskorn homology spheres $Σ(2,3,6n+5)$ where $n\in\mathbb{Z}_+$ and $6n+5$ is a prime. By deriving $\hat{Z}$ for $Σ(2,3,6n+5)$ according to GPPV and Hikami, we provide a formula where one can quickly compute the non-perturbative contributions to the full analytic continuation of SU(2) Chern-Simons partition function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源