论文标题
带有障碍的弹性流:小障碍结果
The elastic flow with obstacles: small obstacle results
论文作者
论文摘要
我们考虑了Euler具有固定末端的图形弹性能量的抛物线障碍问题。我们表明了全球存在,体积良好和次要范围,只要障碍物和最初的基准是“小”的。对于对称锥体障碍,我们可以改善收敛的子融合。还检查了定性方面,例如能量耗散,与障碍和时间规律性的巧合。
We consider a parabolic obstacle problem for Euler's elastic energy of graphs with fixed ends. We show global existence, well-posedness and subconvergence provided that the obstacle and the initial datum are suitably 'small'. For symmetric cone obstacles we can improve the subconvergence to convergence. Qualitative aspects such as energy dissipation, coincidence with the obstacle and time regularity are also examined.